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We estimated condition-specific survival rates of gray triggerfish (Balistes capriscus) using a tag-

recapture approach and extrapolated these values to produce an overall discard survival estimate 

for the US South Atlantic recreational hook-and-line fishery. Tag return rates of fish tagged at the 

seafloor using SCUBA served as a reference for return rates of fish tagged at the surface. We 

examined the validity of gross necropsy as a proxy for survival by identifying likely causes of 

discard mortality. Best-condition surface-released fish (no external trauma) had an estimated mean 

proportional survival of 0.39 (95% confidence interval 0.28, 0.55). For gray triggerfish exhibiting 

visible trauma, estimated survival was 0.24 (0.10, 0.60). Floating fish had a survival rate of zero. 

The necropsy-based estimate of gray triggerfish lacking organ displacement closely matched the 

tag-based estimate of survival. Mean estimated discard survival across all depths for North 

Carolina was 0.35 (0.10, 0.59) and for Florida was 0.34 (0.08, 0.59). These results have 

implications for gray triggerfish management because our estimate of discard survival is 

substantially lower than previously assumed and for future discard survival research given our 

findings with gross necropsies.  

Keywords: Balistes capriscus, catch-and-release, mortality, reef fisheries, tagging 

1. Introduction

For many fisheries, discarded fish make up a large and increasing proportion of total catch 

(NMFS 2016). This trend has resulted from changing angler behavior (Quinn 1996; Graefe and 

Ditton 1997; Allen et al. 2008) and more restrictive management (Kelleher 2005). Substantial 

effort has been spent assessing the magnitude of discards (e.g., Bartholomew and Bohnsack 2005; 

Kelleher 2005; Zeller et al. 2017) and estimating survival rates of discarded fishes (e.g. Davis 



3 

2002), as these figures remain crucial components of modern stock assessments (Alverson et al. 

1994; Breen and Cook 2002; Punt et al. 2006; Viana et al. 2011, 2013; Dapp et al. 2017).  

Methodologies for estimating discard survival have varied, largely due to the difficulty and 

expense associated with quantifying delayed mortality that may result from latent trauma. 

Electronic tagging is expensive, and the effects of such tagging may confound the estimate of 

discard survival for species prone to barotrauma (Curtis et al. 2015). Further, tank holding studies 

may exclude the effects of discard-related predation and therefore may not produce a realistic 

survival estimates (Pollock and Pine 2007). Mark-recapture methods with conventional tags have 

frequently been employed to account for delayed mortality; however, many mark-recapture studies 

lack a control group and instead rely on assumptions about fish in the best observable condition 

based on swimming ability or physical injury (e.g. Wilson and Burns 1996; Patterson et al. 2002). 

Most discard survival studies of physoclistous reef fishes have reported barotrauma as a 

contributor to mortality. The pressure differential between the seafloor and the surface leads to 

internal gas expansion when fish are retrieved, often resulting in positive buoyancy and an inability 

to resubmerge when released at the surface (Davis 2002). Severe physical effects, such as organ 

displacement and internal injuries, have also been documented for many reef fishes, particularly 

when retrieved from deeper depths (Davis 2002; Rummer and Bennett 2005; Jarvis and Lowe 

2008).  

In general, authors have argued that fish with mild or no visible barotrauma are likely to 

survive discarding if they resubmerge (e.g., Beverton et al. 1959; Kaimmer and Trumble 1998; 

Hannah et al. 2008) and have deemed these individuals a control group to which fish in 

compromised conditions may be compared (Hueter et al. 2006). Such proxies may be ineffective 

because internal and latent injuries may impact survival. Furthermore, condition classification is 
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often subjective between observers, which may make results between studies incomparable. More 

recent studies have addressed the issue of latent trauma by applying a range of survival estimates 

to the reference group (e.g. Sauls 2014). While this approach is likely more realistic than the 

former, studies that have an adequate control remain the most robust (Pollock and Pine 2007) 

because they estimate absolute survival (e.g., Rudershausen et al. 2014).  

One technique to estimate absolute survival of demersal fish while having a suitable control 

group is to tag a group of fish at depth using SCUBA divers. This approach was originally used 

by Hislop and Hemmings (1971) to estimate haddock (Melanogrammus aeglefinus) discard 

survival and was recently used by Rudershausen et al. (2014) for black sea bass (Centropristis 

striata). The group of fish tagged by divers is not subjected to barotrauma or other sources of 

mortality associated with surface release, such as hooking injury, air exposure, and water column 

predators, and any handling stress from tagging (though likely negligible) is the same at the surface 

and the seafloor. Furthermore, attrition of tagged fish due to processes such as tag shedding, 

predation, and movement occur at the same rate for fish in the surface-tagged group and the diver-

tagged group, and thus do not need to be estimated or accounted for in this type of study. Therefore, 

all diver-tagged fish are assumed to survive and absolute survival rates of surface-tagged fish with 

injuries can be estimated by comparing recapture rates of surface- and diver-tagged fish. Survival 

estimates from this approach include immediate and delayed mortality.  

Mark-recapture methodologies including SCUBA are costly and time-consuming, and a 

validated proxy for estimating absolute mortality would be valuable to researchers. Laboratory 

examination of sacrificed individuals may be an inexpensive means of elucidating the extent of 

latent trauma and informing mortality estimates (Mikles et al. 2019). Gross necropsy has rarely 

been used in studies of discard survival of barotraumatized fishes (but see Burns and Restrepo 
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2002; Neufeld and Spence 2004; Rummer and Bennett 2005) and has never to our knowledge been 

employed to directly compare prevalence of severe internal injuries to robust estimates of discard 

survival.   

Increased regulations have led to higher rates of discarding in many regions (Kelleher 

2005; NMFS 2016) but robust estimates of discard survival are scarce. One of the species for 

which regulations have recently changed in the southeast United States (SEUS) is gray triggerfish 

(Balistes capriscus), a commercially and recreationally important demersal reef fish in the SEUS 

and Gulf of Mexico. Gray triggerfish and other Balistes spp. are also important to fisheries in other 

coastal regions of the North and South Atlantic (Floeter et al. 2006; Aggrey-Fynn 2009; Gamito 

et al. 2016). Numbers of recreationally discarded gray triggerfish in the SEUS have frequently 

exceeded harvests by a factor of ~2-3 (Figure 1; MRIP 2017). Increased discarding in the Atlantic 

recreational fishery coincided with recent changes to minimum size requirements for gray 

triggerfish with a 305 mm fork-length (FL) limit established for federal waters in North Carolina, 

South Carolina, and Georgia and 356 mm FL limit established in Florida (SAFMC 2014; effective 

July 1, 2015).  

These recent regulatory changes highlight the growing importance of this species in the 

SEUS. There are several studies that estimated discard survival for gray triggerfish (Table 1) but 

none used a control. In this study we estimate discard survival of gray triggerfish using SCUBA 

diver-tagged fish as a control group. We then apply condition-specific estimates of discard survival 

to fishery-dependent observer data to estimate overall discard survival for the gray triggerfish 

recreational fishery in the SEUS. Additionally, we compare our survival estimates to the 

prevalence of external injury or severe internal injury observed using gross necropsies to validate 

the latter as a less expensive proxy for discard survival.  
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2. Methods

2.1. Study area and fish tagging 

Gray triggerfish were caught in Onslow and Raleigh Bays, North Carolina, USA using 

hook-and-line (with conventional reels; maximum drag 12.7 kg) and on-bottom fish traps. 

Terminal tackle for hook-and-line sampling consisted of a three-hook bottom rig with circle hooks 

(Gamakatsu #42410 size 1 or Gamakatsu #42411 size 1/0) or ‘J’ hooks (Gamakatsu #81411 size 

1; Gamakatsu USA, Inc., Tacoma, Washington, USA) and 0.2-0.7 kg lead weight connected by 59 

kg monofilament line. Hooks were baited with cut squid (Dosidicus spp.). Traps were 

approximately cubical with side lengths 0.6 m, and were constructed of 12-ga vinyl-coated wire 

with square mesh size 38 mm and baited with approximately 2 kg Atlantic menhaden (Brevoortia 

tyrannus). Traps had two funnel-type entrances with elongated openings approximately 250 mm 

long and 75 mm wide when stretched. Bait wells were cylindrical (diameter = 120 mm), were 

positioned vertically in the middle of the traps, and extended the entire height of the traps. Traps 

were sometimes set in a string of 5-10 and sometimes set as a single trap per float line, depending 

on the capabilities of the vessel. Traps were retrieved both by pot haulers and by hand, depending 

on vessel capabilities and sea conditions. Tagging occurred in three distinct regions: Onslow Bay 

and two subsets of Raleigh Bay which we term “Atlas” (after a prominent shipwreck) and Chicken 

Rock. Gray triggerfish were angled from depths of 30-40 m (May-December 2015; February-

September 2016; October 2017),which is a common depth of capture of this species in the 

recreational fishery in this region (Figure 2A).  

Gray triggerfish caught with hook-and-line gear were retrieved to the research vessel where 

they were measured (FL, mm), marked with a FM-95W wire-core tag (15 mm x 4 mm ovular disc; 

73 mm streamer; Floy, Inc., Seattle, WA, USA) that was inserted into the abdomen, and released 
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at the surface. Each tag displayed the unique identification number and a statement of “CUT TAG. 

REWARD.” Tags also provided the toll-free phone number for reporting recaptures. Fish were 

evaluated upon release with respect to their behavior and observable trauma and each was assigned 

one of three conditions: condition 1 (no trauma; swam down), condition 2 (trauma; swam down), 

and condition 3 (floated). Trauma was defined as obvious external injury related to capture, such 

as prolapsed intestine or visceral extrusion through the mouth or gill operculum, and also included 

possible stressors such as moderate to severe bleeding or abrasions that were a result of capture. 

Condition categorizations were made for every surface-released fish in the study by the first author 

(B. Runde) and did not depend on the length of time it took gray triggerfish to submerge once 

released, provided that they did submerge. Almost all (99+%) gray caught with hook-and-line are 

jaw-hooked (Sauls et al. 2015), therefore we elected to tag only jaw-hooked individuals. Depths 

of capture were recorded as the depth measured by the on-board sonar unit of the vessel.  

In order to establish a control group, gray triggerfish caught with fish traps were tagged at 

the seafloor using SCUBA (sensu Rudershausen et al. 2014). Two divers removed gray triggerfish 

from traps on the seafloor one at a time and tagged them at depth with the methods described 

above. If more gray triggerfish were captured in the traps than could be tagged by divers, the 

remainder were retrieved to the research vessel where they were measured, tagged, and released 

at the surface. Survival estimates of these individuals was modeled separately from those tagged 

with hook-and-line.  

2.2. Estimation of discard survival of tagged fish 

We used a Cox proportional hazards regression model to estimate survival of gray 

triggerfish (Cox 1972). Sauls (2014) took this approach when using mark-recapture data to 

estimate discard survival of gag (Mycteroperca microlepis). The response variable for this model 
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is the time-at-large for an individual tagged fish prior to recapture (coded as 1) or censorship 

(coded as 0). For censored fish that were not recaptured, time-at-large was the amount of days 

between when an individual was tagged and October 1, 2018, which we defined as the end of the 

study period for this analysis. In addition to condition (our variable of interest) we tested covariates 

that may have had a significant influence on the recapture rates for gray triggerfish, including size 

(FL), season, year, and region, as well as interaction terms. For each model, covariates for 

inclusion were selected through alternate forward and backward selection using the function step() 

in R (R Core Team 2017), which uses AIC to determine the most parsimonious model. The hazard 

for each individual is defined as the probability that a tagged fish is recaptured at time t given the 

particular set of covariate values for that fish. The resulting hazard ratios for each treatment can 

be interpreted as relative survival when all other variables are held constant. If the reference group 

also serves as a control (as in this case, since diver-tagged fish experienced no trauma from 

retrieval to the surface), then the hazard ratio is a measure of absolute survival for fish in the same 

treatment group. Further mathematical details on using this model may be found in Cox (1972), 

Sauls (2014), and the R package “survival” (Therneau 2015; R Core Team 2017). 

We conducted separate models for trap-caught surface released fish and hook-and-line-

caught surface released fish, each relative to the seafloor control group. This was necessary 

because all seafloor control fish were assigned to both the reference gear and the reference 

condition, resulting in perfect correlation between these two variables. We also had an interest in 

evaluating survival values for hook-and-line-caught gray triggerfish separately, because the vast 

majority of releases in the fishery are from this gear.  

Proportionality of the underlying hazard function is a critical assumption of the Cox 

proportional hazards model (Peduzzi et al., 1995). We tested this assumption by examining our 



9 

hook-and-line and trap results graphically in the form of “survival” curves (where “survival” 

equals “not recaptured”), generated with the function ggadjustedcurves() in the R package 

‘survminer’ (Kassambara and Kosinski, 2018). If the curves appeared parallel and did not cross, 

we could accept that the assumption of proportionality was not violated (Kumar and Klefsjö, 

1994).  

2.3. Effect of tagging on condition   

We tested for an effect of tagging on release condition. Making incisions through the body 

cavity of physoclistous fish may relieve pressure from barotrauma (Rudershausen et al. 2014; 

Johnson et al. 2015) and result in a tagging-induced improvement in observed condition (i.e., more 

fish swim down because they were effectively vented). We examined whether tagging influenced 

release condition by performing a Fisher’s exact test of independence to compare the frequencies 

of floating between tagged and untagged groups of gray triggerfish.  We caught gray triggerfish 

by hook-and-line with the gear described above. Some fish were tagged as part of the tagging study 

while others were released untagged for unbiased condition observation. This portion of the study 

took place at a single site over 4 days, with similar numbers of tagged and untagged individuals 

released each day. If there was no effect of tagging on condition then it would be possible to 

extrapolate the numbers by condition in our study to the fishery without, or in addition to, fishery-

dependent condition data. Any significant effect of tagging on condition assignment would require 

fishery-dependent data alone to make accurate inferences about discard survival in the fishery. 

2.4. Estimation of fishery-dependent discard survival   

We categorized gray triggerfish from a Florida fishery-dependent dataset into depth bins 

based on the bottom depths recorded by fishery observers aboard recreational for-hire fishing 

vessels. Proportional condition-by-depth was determined for each of six depth bins (< 21 m, 21-
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30 m, 31-40 m, 41-50 m, 51-60 m, and >60 m; Figure 2B). The Florida Fish and Wildlife 

Conservation Commission has collected information on the quantity and disposition of discarded 

hook-and-line-caught gray triggerfish observed from headboats since 2011, and fish were also 

observed from smaller charter vessels during a three-year period from 2013-2015 (Sauls et al. 

2015). While observer datasets exist for other states in the US southeast, to our knowledge only 

the Florida program records sufficient detail (i.e., they recorded injury from barotrauma, release 

disposition, and hooking location for each fish) to allow post hoc categorization into our condition 

categories (1, 2, and 3). The fish included in the Florida program were not tagged. We assumed 

survival-by-condition for tagged fish and untagged fish was the same.  

We calculated fishery-dependent discard survival by using our survival-by-condition as 

estimated from the tagging study and applying them to each depth zone as:  

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑗 =  
∑ 𝑆𝑖𝑛𝑖𝑗

3
𝑖=1

𝑛𝑗

where i is the condition category (1-3),  j is the depth zone, Si is the survival of condition i fish as 

determined from our tagging study (hook-and-line-caught fish only), and nij is the number of 

released fish in condition i at depth j as determined from the Florida fishery dependent dataset 

(Figure 2B). Survival probability for condition 3 fish (S3; floating fish) was fixed at zero (Burns 

and Restrepo 2002).   

In order to estimate a rate of fishery-wide discard survival across all depths, we calculated 

proportions of released gray triggerfish for Florida using the fishery-dependent dataset described 

above and for North Carolina using a similar less-detailed dataset. The North Carolina dataset was 

from the NOAA Fisheries Southeast Region Headboat Survey and contained numbers of gray 

triggerfish released from headboats in North Carolina from 2013-2017, as well as “primary depth 

fished” on the day of observation (J. Hackney, National Marine Fisheries Service, Beaufort, North 
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Carolina, personal communication, 2017). We calculated the proportion of releases for North 

Carolina in each depth zone based on primary depth fished for that day (Figure 2A). For each state 

(North Carolina and Florida), we simulated a population of 10 million fish. Each individual was 

assigned a depth bin of release based on the proportions of releases in each state (Figure 2A). 

Based on the assigned depth bin, each simulated individual was assigned a release condition with 

the probabilities determined from the observer data (Figure 2B) and an associated “chance of 

survival.”  Chances of survival were random draws from an untransformed (i.e., normal) 

distribution with means and standard deviations taken from the condition-specific Cox 

proportional hazards output. The resulting 10 million chances of survival were then back-

transformed through exponentiation, and means and standard deviations were calculated for each 

state based on these matrices.  

2.5. Post-mortem examination of gray triggerfish and comparison to tagging results  

We performed necropsies on gray triggerfish captured with hook-and-line and traps from 

30-40 m. After capture, individuals were placed directly into an ice-water mixture and remained

on ice for 5-72 h prior to necropsy. We examined individual gray triggerfish for external and 

internal gross signs of barotrauma, including organ damage and displacement. Gray triggerfish 

were classified into condition categories as they would have been if tagged and released 

(conditions 1 and 2 only, as it was impossible to determine if retained fish would have floated). 

We measured the amount of any organ displacement (e.g., intestinal prolapse) in the un-stretched 

state. Where applicable, we also qualitatively assessed the severity of internal injuries. We 

considered injuries not survivable if they appeared likely to result in inhibition of feeding or 

respiration. We did not consider a ruptured swim bladder to be lethal, given that reef fish have 

been shown to heal this organ in as little as 4 days (Burns and Restrepo 2002). Necropsies were 
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performed in consultation with Dr. Craig Harms, NC State University College of Veterinary 

Medicine, Raleigh, NC, USA under the auspices of IACUC #16-205. We compared the proportion 

of gray triggerfish with severe internal or external injury to our mean estimates of discard survival. 

3. Results

3.1. Estimation of discard survival of tagged fish 

For gray triggerfish tagged at the seafloor from traps by SCUBA divers, 121 of 215 (56%) 

individuals were recaptured. Of individuals tagged at the surface, we recaptured 67 of 242 (28%) 

captured with hook-and-line and 58 of 192 (30%) captured with traps. The majority of recaptures 

(80%) were by our research team during tagging operations at sites where fish were previously 

tagged. Remaining recaptures were from recreational, commercial, and charter anglers. 

Breakdowns of recaptures by condition are provided in Table 2. Liberty periods for recaptured fish 

ranged from 2 d to 470 d, with a mean of 72 d.  

The Cox proportional hazards model of gray triggerfish caught with hook-and-line 

produced a survival estimate for condition 1 individuals of 0.39 (95% CI 0.28, 0.55; z = -5.42; p 

< 0.01; Table 2). Gray triggerfish in condition 2 caught with hook-and-line had an estimated 

survival of 0.24 (0.10, 0.60; z = -3.06; p < 0.01). While confidence intervals for conditions 1 and 

2 overlap, indicating that survival is not significantly different among these two treatments, 

survival for both groups is reduced relative to the control group since neither confidence interval 

contains 1.0 (which would indicate 100% survival). Condition 1 fish caught with traps had an 

estimated survival of 0.49 (0.37, 0.67; z = -4.63; p < 0.01). Condition 2 fish caught with traps had 

an estimated survival of 0.24 (0.13, 0.45; z = -4.59; p < 0.01). Zero floating gray triggerfish were 

recaptured, therefore condition 3 individuals caught with both gear types had survival estimates of 

0.00 with infinite confidence intervals, which can be interpreted as a survival of exactly zero. 
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Covariates retained in the best models for hook-and-line were condition, season, year, region, and 

depth and for traps were condition, region, and depth. Test statistics and p-values are provided in 

Table 3 and further statistics for each retained variable, including coefficients and confidence 

intervals, are provided in Table S1. Confidence intervals in Table S1 are for the odds ratio, which 

can be interpreted as the proportional relationship between the effects of each variable on survival 

(relative to an effect of 1.0). Graphical examination of the survival curves for each condition in 

both models (traps and hook-and-line) suggested that the assumption of proportionality was not 

violated (Figure 3).    

3.2. Effect of tagging on condition   

We found that a higher proportion of untagged fish floated (40/256, 15.6%) versus tagged 

fish (14/393; 3.6%) caught with hook-and-line. A Fisher’s exact test of independence of these 

values was significant (p < 0.01, sample odds ratio: 0.20; 95% CI for odds ratio: 0.10, 0.39). 

Because the confidence interval for the odds ratio does not contain 1.0, we conclude that untagged 

gray triggerfish have a significantly higher chance of floating as compared to tagged gray 

triggerfish. 

3.3. Estimation of fishery-dependent discard survival    

Discard survival values for each of the six depth bins, calculated based on the proportions 

of each condition in each depth bin (Figure 2B), ranged from 0.29 to 0.37 (Table 4). Using our 

simulated populations of 10 million fish for each state, we estimated overall discard survival for 

the recreational hook-and-line fishery in North Carolina as 0.35 (0.10, 0.59) and for Florida as 

0.34 (0.08, 0.59). 

3.4. Post-mortem examination of gray triggerfish and comparison to tagging results  
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We performed necropsies on a total of 68 gray triggerfish. The most common severe 

internal injury was a prolapsed intestine into the buccal cavity (n=37), likely as a result of pressure 

from the expanded (often to the point of rupture) swim bladder (Figure 4). We also observed 

related trauma in some individuals, such as liver prolapse into the buccal cavity (n=2) and visceral 

protrusion between gill arches (n=4), but these traumas always co-occurred with buccal intestinal 

prolapse. Lengths of prolapsed intestine into the buccal cavity ranged from 20-240 mm (mean = 

102 mm). For gray triggerfish classified as condition 1 (no obvious external injuries) caught with 

hook-and-line, we observed severe internal injury in 24 of 32 fish (75%). For gray triggerfish 

caught with traps in condition 1, 12of 24 fish (50%) had sustained severe internal injury. Lower 

percentages of gray triggerfish in condition 2 had sustained severe internal injuries: 1 of 4 fish 

(25%) caught with hook-and-line and 0 of 8 fish (0%) caught with traps. Overall, 31% of 

necropsied gray triggerfish caught with hook-and-line had experienced neither external nor severe 

internal injury, which is extremely close to our survival estimate for this depth range (33%; Table 

4).  

4. Discussion

We found that discard survival of gray triggerfish was much lower than estimated in 

previous studies. Our study accounted for delayed mortality by using a mark-recapture approach 

and we employed a robust control group through the use of SCUBA divers. None of the previous 

studies of this species (Table 1) used a control, and their survival estimates varied widely (0.07 to 

1.0; mean = 0.75). A discard survival of 0.875 was used for all gears, depths, conditions, and 

fishing sectors in a 2016 gray triggerfish stock assessment (SEDAR 2016). Based on our estimates, 

0.875 is an overestimate of the discard survival in the hook-and-line fishery. Our estimates of 

discard survival for hook-and-line fisheries in North Carolina of 0.35 (0.10, 0.59) and in Florida 
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of 0.34 (0.08, 0.59) are likely more accurate because they account for delayed mortality and used 

a control group that did not undergo traumas associated with a surface release.  

The estimates of survival by condition were similar for surfaced-released gray triggerfish 

from hook-and-line and trap gear. The overwhelming majority of gray triggerfish landings across 

sectors are from the hook-and-line fishery (approximately 99.4% from 2006-2013; SEDAR 2016; 

MRIP 2017). Therefore, discard survival by condition data for gray triggerfish caught with hook-

and-line are most relevant to the stock assessment and were used to estimate overall discard 

survival in the fishery.  

We estimated depth-specific discard survival for gray triggerfish (Table 4) because 

releases-by-depth for this species vary between states (Figure 2A). Such information is valuable 

to managers who may consider management strategies such as varying minimum length limits 

based on depth (Stewart 2008) or implementing spatial closures in deeper water (Roberts 2002). 

The utility of this information could be increased by adapting recreational fisheries data collection 

(e.g., NOAA MRIP) to include information about depth of capture.  

Our estimate of discard survival takes into account any proportional increase in impaired 

conditions with depth, but assumes survival-by-condition remains constant regardless of depth of 

capture. It is likely that survival within condition differs with changing depth and we describe the 

direction of bias for our study below. We collected empirical data only in 30-40 m. While relatively 

narrow, this depth range does represent an increase in seafloor pressure from approximately 4 to 

5 atm. Our tagging effort within this range was concentrated in two depths: of 649 total tagged 

gray triggerfish, 152 were tagged at a single site in 30 m and 390 were tagged at a single site in 38 

m. In the Cox proportional hazards model for gray triggerfish caught with hook-and-line, the

variable for depth was retained. However, depth was not significant (p = 0.10) and its correlation 
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with survival was positive (i.e., the model predicts higher survival in deeper depths) which is 

contrary to the expectation (Table S1). Therefore, the evidence at hand suggests survival-by-

condition is constant across depths from 30-40 m. If survival-by-condition in depths other than 30-

40 m differed from the estimates we present here, we would predict higher survival in shallower 

depths and lower survival in deeper depths. Based on the distribution of releases-by-depth in NC 

and FL (Figure 2A) we suggest that overall survival estimates would decrease if survival-by-

condition were not constant across depths.  

Most published estimates of discard survival of reef fish (including those cited above) are 

for Perciform fishes. The paucity of estimates for species of other taxonomic orders is probably 

due to the dominance of perciform fishes in many reef fish communities and their associated 

popularity as food/sport fish. Colotelo et al. (2012) commented on the dramatic effect of 

morphological differences on the impacts of decompression and barotrauma. It is possible that the 

different biology and physiology of tetraodontiform fishes (including gray triggerfish) contributes 

to their lower discard survival. Swim bladder expansion may be more traumatic in triggerfish than 

in perciforms as a result of these anatomical differences. For example, the rigid body wall in gray 

triggerfish might result in organ compression where fish such as black sea bass may only 

experience body expansion and stomach eversion, the effects of which may be reversible.  

Anatomical characteristics of the gastrointestinal tract may also contribute to low survival 

we observed in gray triggerfish relative to other species. Gray triggerfish have a relatively long 

intestinal tract (Al-Hussaini 1947) perhaps as a result of their largely durophagous diet (Durie and 

Turnigan 2001). Through necropsy, we found intestinal prolapse into the buccal cavity in a high 

percentage (69%) of fish caught with hook-and-line. Given the low discard survival we estimated 

in this study, this injury may result in permanent damage to the gastrointestinal tract and adjacent 
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organs. Because this injury is cryptic, it was not accounted for in categorizing tagged gray 

triggerfish release condition.  

We used obvious external injuries (most commonly, intestinal prolapse through the cloaca) 

to classify released gray triggerfish by condition. Some studies have shown that such metrics are 

not good predictors of mortality (Jarvis and Lowe 2008; Hochhalter and Reed 2011). Our finding 

of latent injuries in gray triggerfish is further evidence that external condition alone may be a poor 

predictor of survival: based on our necropsy results, many fish that we classified as condition 1 

likely experienced internal injuries. This is probably reflected in the overlapping confidence 

intervals around estimated rates of mean survival for conditions 1 and 2 (Table 2).  

The preponderance of past discard survival studies of reef fishes have relied on external 

proxies to inform mortality estimates (e.g., Wilson and Burns 2002; Hueter et al. 2006). A 

comparison of our results to studies employing this methodology for gray triggerfish (e.g., studies 

in Table 1) demonstrates the magnitude of inaccuracy that may occur when certain proxies (such 

as swimming ability) are used. Our use of gross necropsy demonstrated that examination of 

internal traumas can be valuable when combined with traditional external condition assessment of 

reef fishes. The proportions of gray triggerfish with either external or internal injury matched our 

mean survival estimates closely.  

Sampling design (including sample size) and analytical methodology are crucial to the 

success of survival studies in fisheries and other disciplines (Goodyear 2002; Ryan 2013). 

Simulations can be valuable when considering the sample size necessary to attain a desired level 

of statistical power in survival studies (Horodysky and Graves 2005). However, fisheries 

researchers often do not have the luxury of performing realistic simulations due to a lack of pilot 

data and/or broad uncertainty in necessary input values (e.g., tag recovery rate, survival rate). 
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Therefore choosing an analytical method that produces relatively precise estimates is even more 

valuable in these situations than otherwise. The Cox proportional hazards model is one such 

method because it incorporates temporal information and covariates (Sauls 2014). Earlier 

methodologies such as the “relative-risk” model (Hueter et al. 2006; Rudershausen et al. 2014) 

require a larger sample size to obtain similar precision. In the absence of covariates, the Cox model 

reduces to the relative risk model; we therefore suggest that future authors performing similar 

analyses to those shown here employ the Cox proportional hazards regression model, especially 

when data are unavailable for simulations.  

Many authors have explored methods to increase post-release survival of reef fish by 

mitigating the effects of barotrauma (e.g. Theberge and Parker 2005; Curtis et al. 2015; Runde and 

Buckel 2018). Two techniques include venting and forced recompression via the use of a descender 

device (reviewed by Eberts and Somers 2017). However, these efforts are most often used when 

there is a high likelihood of fish being unable to re-submerge after release (Crandall et al. 2018). 

For gray triggerfish, a low percentage (< 10%) floated regardless of depth (Figure 2B) so venting 

or forced recompression devices are unlikely to be useful for many released individuals of this 

species, although some may protect recompressed fish from water column predation. Even if the 

survival for floating gray triggerfish was greater than 0, overall discard survival for this species 

would still be low.  

Our findings could be used to refine management for gray triggerfish, perhaps by 

reconsidering the 2015 size requirement. Minimum size requirements may be ineffective for short-

lived highly productive fish (such as gray triggerfish) if the discard survival rate is below 0.80 and 

effort is high (Coggins et al. 2007). Indeed, if discard survival is relatively low (as found here), 

length-based management strategies may not be effective for long-term conservation of a stock 
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even under moderate (fishing mortality = 0.8*natural mortality) levels of exploitation (Gwinn et 

al. 2013). While gray triggerfish are not overfished in the US South Atlantic region (SEDAR 

2016), this species is considered overfished in the US Gulf of Mexico (SEDAR 2015). Given the 

low discard survival estimated here, management strategies that result in gray triggerfish discards 

will not reduce rates of fishing mortality to the extent estimated in previous assessments. Low 

discard survival should also be considered for management of other balistids and related fishes 

worldwide.  

The importance of accurate estimates of discard survival in assessing fish stocks has been 

recognized (Davis 2002; Coggins et al. 2007) and improvements to study design (Pollock and Pine 

2007) have increased in recent years (e.g., Rudershausen et al. 2014; Curtis et al. 2015; Capizzano 

et al. 2016). Our research demonstrates how tag-recapture techniques and the use of an adequate 

control group can lead to markedly different estimates of discard survival for an important reef 

species in the US South Atlantic region. In addition, we demonstrate the utility of gross necropsy 

in identifying severe internal injuries in fish that would otherwise have been considered best-

condition. The technique lends itself to incorporation in future studies of discard survival of reef 

fishes given its ease and low cost. The approach we have taken to estimate discard survival of gray 

triggerfish is warranted for other reef species where barotrauma and high rates of discarding are 

issues facing fisheries managers.  
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Figure 1. Gray triggerfish Balistes capriscus releases and harvests (3-year moving average; e.g., 

1982 value is average of 1981, 1982, and 1983) in the southeast US from National Oceanic and 

Atmospheric Administration Marine Recreational Information Program, 1981-2017 (MRIP 

2017). Input variables for query were: 1981-2017, all modes (e.g. charter boats, private boats) 

combined, all areas combined, South Atlantic, and All Catch Types. Query performed 2 

November, 2018. In mid-2015, a 305 mm minimum size requirement was established for North 

Carolina, South Carolina, and Georgia and an existing 305 mm fork-length requirement was 

increased to 356 mm for Florida. MRIP query can be accessed at: 

https://www.st.nmfs.noaa.gov/recreational-fisheries/data-and-documentation/queries/index.  
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Figure 2. A) Proportion of gray triggerfish Balistes capriscus released in each depth bin off 

North Carolina and Florida, 2013-2017. Data for North Carolina are from NOAA Fisheries 
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Southeast Region Headboat Survey and data from Florida are from the Florida Fish and Wildlife 

Conservation Commission (Sauls et al. 2015).  

B) Proportion of gray triggerfish released in conditions 1, 2, and 3 by depth off Florida (Sauls et

al. 2015). Condition 1 fish showed no external trauma, condition 2 fish showed external trauma 

but swam down, and condition 3 fish floated.  

figure 3 
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A. 

B. 

Figure 3. Image of gray triggerfish Balistes capriscus with a clear buccal cavity (A) and of gray 

triggerfish with a buccal cavity blocked by intestine (B). Yellow arrows indicate the buccal 

cavity, and in B, prolapsed intestine in the buccal cavity and caught in the first gill arch.  
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Table 1. Discard survival estimates from studies used in the 2016 South Atlantic Fishery 

Management Council gray triggerfish Balistes capriscus stock assessment. Reproduced and 

adapted from SEDAR (2016). Gear identifies whether the study methods included hook-and-line 

(HL) or trap-caught fish.  

Source Depths Methods n fish Gear Est. survival 

Sauls et al. 

(2013) 

Broad; mean = 

29 m 

Observer data, 

condition proxy 

797 HL 0.88 

McCarthy (2013) Unreported Logbooks, 

condition proxy 

N/A HL, 

trap 

0.88 

Rudershausen et 

al. (2010) 

29-37 m Tagging, 

condition proxy 

332 HL, 

trap 

0.85 

Collins (1996) 21 m, 46-54 m Condition proxy 6 HL 0.83 

Stephen and 

Harris (2010) 

20-80 m Condition proxy 25 HL 0.07 

Patterson et al. 

(2002) 

21-32 m Tagging, 

condition proxy 

842 HL 1.00 
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Table 2. Mean and confidence intervals for discard survival of conventionally tagged gray 

triggerfish Balistes capriscus estimated from fitting two Cox proportional hazards models to data 

collected in the southeast US reef fishery. Fish were tagged between May 2015 and December 

2017 and tags were returned between June 2015 and July 2018. Condition 0 fish were tagged by 

SCUBA divers at the seafloor and had an assumed survival of 1.0 (italicized below). Condition 1 

fish had no visible trauma, condition 2 fish had visible trauma but swam down, and condition 3 

fish floated. Model results are separated by the two gear types used in the fishery. For each 

model run, mean survival estimates for conditions 1-3 are relative to assumed survival for 

condition 0 fish.  

Condition Capture gear n tagged n 

recaptured 

Proportion 

recaptured 2.5% 

CI 

Mean est. 

survival 97.5% 

CI 

Liberty period 

range (days) 

0 SCUBA Control 215 121 0.56 - 1.0 - 0-324

1 Hook-and-line 200 61 0.31 0.28 0.39 0.55 5-470

2 Hook-and-line 37 6 0.16 0.10 0.24 0.60 11-255 

3 Hook-and-line 5 0 0.00 - - - - 

1 Trap 120 46 0.38 0.37 0.49 0.67 8-210 

2 Trap 62 12 0.19 0.13 0.24 0.45 7-465 

3 Trap 10 0 0.00 - - - - 
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Table 3. Summary of the independent variables retained in two Cox hazard models of gray 

triggerfish Balistes capriscus caught with A) hook-and-line and B) traps. Variable selection was 

conducted alternately forward and backward using the R procedure step(). Reference variables 

were Condition = 0, Season = winter, Year = 2015, and Region = Onslow Bay.  

A. 

Variable df   X2 p(>|X2|) 

Condition 3 61.97 <0.01 

Season 3 14.16 <0.01 

Year 2 1.75 0.42 

Region 2 11.83 <0.01 

Depth 1 2.72 0.10 

B. 

Variable df   X2 p(>|X2|) 

Condition 3 51.88 <0.01 

Region 2 15.52 <0.01 

Depth 1 2.20 0.14 
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Table 4. Depth-specific mean survival estimates for gray triggerfish Balistes capriscus in the 

southeast US hook and line fishery. Survival estimates were calculated as a weighted average 

using survival-by-condition estimates (Table 2) and proportion of releases in each condition for 

each depth bin (Figure 2B).  

Depth < 21 m 21-30 m 31-40 m 41-50 m 51-60 m >60 m

Estimated 

Survival 
0.37 0.37 0.33 0.32 0.33 0.29




